
Application to NWO-EW Open Competition 2004, Second Round
1a Project Title: Graphs for Software Language Definitions
1b Project Acronym: GRASLAND
1c Principal Investigator: Dr. ir. A. Rensink, University of Twente

2a Summary. In the context of the MDA (Model Driven Architecture) methodology for designing
maintainable software systems, model transformation is a central concept. Models are used to describe
the system in all phases of development and on various levels of abstraction; they are specified in
diverse (modeling and programming)software languages(SLs). Model transformations typically
introduce concrete, implementation specific details.

Such transformations are intended to becorrectness preserving: they should not introduce errors
or essential changes. This, however, can be guaranteed only if the meaning of the SLs involved is
defined with sufficient precision. Unfortunately, this is often lacking: many SLs have a well-defined
syntax but only an informal semantics. A primary reason for this is that MDA does not include a
general method for easily and consistently defining the subtler aspects of SLs, such as their semantics.

The purpose of this project is to define ameta-languagein which all aspects of SLs, besides their
concrete syntax, can be defined in a consistent manner. As a common formal foundation of this meta-
language we proposegraphsandgraph transformations, which we believe to be powerful enough to
capture all relevant SL aspects. This meta-language will enable us to provide semantic definitions
of the source and target SLs involved in a given model transformation on a compatible basis; this in
turn will enable us to precisely formulate and check the requirement of correctness preservation. We
believe these abilities to be essential in realizing the full potential of MDA.

2b Lekensamenvatting. In de context van MDA (Model-Driven Architecture), een tamelijk re-
cente methodologie voor het ontwerpen van goed onderhoudbare software-systemen vaarvoor een
groeiende belangstelling bestaat, neemt het transformeren van modellen een centrale plaats in. Het
gaat hierbij om modellen die het te ontwikkelen software-systeem in een bepaalde ontwerpfase en
op een bepaald abstractienivau beschrijven; hun transformatie betreft bijvoorbeeld het toevoegen van
concrete, implementatiespecifieke details.

De bedoeling is dat zulke modeltransformaties “correctheidbewarend” zijn, dat wil zeggen geen
fouten of wezenlijke veranderingen in het gemodelleerde systeem introduceren. Zekerheid hierom-
trent kan echter alleen bestaan als de betekenis van de gebruikte modeltalen voldoende duidelijk ge-
definieerd is. Helaas ontbreekt het hier in de praktijk vaak aan: veel modeltalen hebben wel een
goedgedefinieerde syntax maar slechts een informele semantiek. Als reden hiervoor is aan te voeren
dat er in de context van MDA geen algemeen geaccepteerde methode bestaat om subtielere taalaspec-
ten, zoals semantiek, op eenvoudige en consistente manier te definiëren.

Het doel van dit project is de definitie van een “meta-taal” voor het definiëren van softwarebe-
schrijvingstalen; een taal dus waarin (naast de concrete syntax) ook andere aspecten van model- en
programmeertalen gedefineerd kunnen worden. Aangezien de basis voor de semantiek van alle aldus
gespecificeerde modeltalen hiermee gelijk komt te liggen, maakt dit het mogelijk om de eis dat mo-
deltransformaties correctheidbewarend moeten zijn formeel vast te leggen, en deze eigenschap voor
gegeven transformaties formeel te bewijzen. Dit is een noodzakelijke stap in het realiseren van de
potentïele mogelijkheden van MDA.

3a) Informaticadisciplines:

3. Software Engineering: 3.2 (specificatiemethoden), 3.5 (interoperabiliteit), 3.6 (ontwikkeltools)
6. Fundamenten: 6.3 (semantiek), 6.5 (formele methoden)

3b) NOAG-i thema’s: Software Engineering (SE), Algorithms and Formal Methods (AFM)

1



4 Composition of the Research Team.The researchers that will be involved in this project are
listed in the following table. Prof. dr. ir. M. Akşit will act as promotor of the OiO.

Name (title) Position Expertise Institute fte
– OiO (this project) – Univ. Twente 1.0
M. Akşit (prof.dr.ir.) HL Software Engineering Software engineering Univ. Twente 0.0
A. Rensink (dr.ir.) UHD Software Engineering Graph transformation Univ. Twente 0.1
A. Kleppe (drs.) Consultant Model-Driven Architecture Klasse Objecten 0.1

5 Research School.The Software Engineering chair is a member of the research school: Instituut
voor Programmatuurkunde en Algoritmiek (IPA).

6 Description of the Proposed Research

6.1 Context of the Proposed Research

A widely recognized proposal for combating the maintenance and evolution problems faced in soft-
ware engineering is themodel driven approach, brought to the world’s attention by the OMG’s Model
Driven Architecture (MDA) framework [28]. MDA builds upon and greatly extends UML [46]; its
cornerstones are meta-modeling and model transformation.

Key concepts in MDA are:model, language, model transformation, andplatform. The relation-
ships between these concepts are shown in Figure 1 (taken with permission from Fig. 8-8 of [28]).

Within MDA, a model is defined as a description of a software system written in a certain lan-
guage, preferably a well-defined language (see Problem Description for our definition of a well-
defined language). A modeltransformationconverts one model into another model. Often the source

Figure 1: Concepts and relationships in the MDA framework

2



model is a so-called Platform Independent Model (PIM), whereas the target model is a Platform Spe-
cific Model (PSM). The concept of platform in this context can be described as the specific software
and hardware that constitute the execution environment of the software system. Model transforma-
tions are automated and carried out by transformation tools. The input for the tools are transformation
definitions.

Although MDA has received a warm welcome by the software developing community, currently
the MDA vision cannot be implemented to its full extent, for the following reasons (among others):

1. UML, which is the language that is most often used for writing PIMs, lacks coherence and a
well-defined semantics (see, e.g., [36, 22, 18, 12]).

2. The language in which model transformations should be written is not yet standardized. The
OMG standardization process of what is now called the Query-View-Transformation (QVT,
[34]) is still on its way, and the timing of its completion is uncertain.

3. The languages commonly used for writing PSMs, which are typically ordinary programming
languages and extensions thereof, are usually not defined in a manner suited to build transfor-
mation definitions. Often a BNF grammar and a compiler are the only definitions provided.

This project addresses the third of these problems (and thereby implicitly part of the first, since UML
is one of the SLs in question).

6.2 Problem Description

In the MDA Guide Version 1.0 ([28]) the concept of model transformation is defined as follows:

Model transformation is the process of converting one model to another model of the
same system.

The fact that input and output models should describethe same systemimplies that model trans-
formations are to preserve the meaning of the model(s) being transformed (see also [24]). For the
meaning of the models we have to look at the semantics of the languages in which they are described.
From now on we call theseSoftware Languages(SLs), be it for implementation (i.e., programming
languages) or specification.

The semantics of current SLs are often imprecise or even completely lacking (except through the
“tool semantics” provided by the compiler). Therefore it is difficult to determine with any degree of
rigor whether a given model transformation really meets the above criterion. We hold that for building
useful model transformations, it is imperative that the SLs in which the source and target model are
written arewell-defined. We call a language well-defined when the following aspects are clear and
unambiguous:

• The concrete syntax: i.e., the notation used for writing models;

• The abstract syntax: i.e., the concepts available for constructing models;

• The static semantics: i.e., the elements and conceptual relationships of the systems described
by the models;

• The dynamic semantics: i.e., the behavior of the systems described by the models, as can be
examined by the changes between snapshots taken at subsequent points in time;

• The relationships between these four aspects.

3



As remarked above, many SLs used in the context of MDA lack one of more of these aspects.1 Espe-
cially the requirement that static and dynamic semantics are closely related and should not be defined
separately is important for SLs. Software is by definition dynamic. Even simple data storage systems
have an important dynamic side (the so-called CRUD functions). A definition of an SL therefore
cannot be complete without a definition of the dynamic semantics.

The established manner for defining concrete syntax is (E)BNF. The OMG standard called Meta-
Object Facility [33] has been proposed as a means for defining abstract syntax. What is lacking,
however, is a general way to define the relationship between concrete and abstract syntax, for instance
along the lines of attribute grammars. Even less clear in the context of MDA is a convenient means
for consistently defining static and (operational) dynamic semantics, in a way that is compatible with
the abstract syntax — even though the essential theory has been known for some time (e.g., [48, 31]).

Note that it is not even necessarily the case that there is only one possible semantics to a given
(concrete and abstract) syntax. A case in point are UML statecharts, for which a large number of
semantics definitions have been published (e.g., [27]). Due to this plethora, if the intended semantics
is not explicitly given it can still be unclear whether a given system built from a statechart indeed
conforms to its intended specification.

What MDA needs in order to fulfill its promise is a special-purposelanguage definition language
(LDL) for defining all four SL aspects in a compatible framework; in other words, a meta-language
in which multiple SLs can be defined so as to uphold the well-definedness requirements stated above.
The goal of this project is the definition of such a meta-language.

6.3 Approach

In this section we propose a solution strategy to the problem described above, based on two key
principles. (We useL to denote an arbitrary given SL andp for a “program” [model, instance] ofL.)

1. We explicitly recognize, for each of the SL aspectsAsp identified above, on the one hand the
meta-modelAspL defining that aspect forL, and on the other hand theprocessof constructing
model instancesAsp(p) of AspL for concrete programsp of L.

2. We propose to usegraphsandgraph grammarsto define the models, meta-models (interpreted
as type graphs) and transformation processes for all SL aspects.

Example. We demonstrate these principles using a running example. We define a toy Software Lan-
guageXL, consisting just of label declarations and goto statements, with the following grammar:

Prog ::= Stat ‘ ; ’ Prog | Stat ‘ . ’ .

Stat ::= Label | GoTo .

Label ::= Id .

GoTo ::= go Id .

At a statement of the formgo x, the system jumps non-deterministically to any of the places where the
labelx is declared. The following is our running example programxp in this language:

a; go a; a.

Concrete Syntax.The concrete syntax ofL is typically given in EBNF, which is a string grammar.
The grammar gives rise to a parser forL which can construct a syntax treeCoSy(p) from syntactically

1It should be remarked that there is no universally agreed-upon terminology: although we find it useful to distinguish
these aspects for modeling purposes, others prefer to call the first threesyntax, and only the fourthsemantics; see, e.g., [29].

4



correct instancesp of L. The structure of the syntax trees is implicit in the rules of the grammar: the
nodes are terminals and non-terminals, and the branching structure is derived from the placement of
the corresponding textual fragments within the originalp.2

For the purpose of this project we require an explicit specification of the meta-modelCoSyL of
the concrete syntax trees ofL, in addition to the rules of the grammar; moreover, the grammar is taken
as a special case of a graph grammar.

Example.The first column of Figure 2 shows the concrete syntax meta-modelCoSyXL and the concrete
syntax treeCoSy(xp). Note that we have made the ordering of the children in the syntax tree explicit.

Abstract Syntax. As stated in the previous section, in the context of MDA the abstract syntax for
a given SLL is typically defined through a (possibly annotated) diagrammatic meta-model; in the
setting of this project, this corresponds to a type graphAbSyL. InstancesAbSy(p) (for p a program
of L) are to be derived from the corresponding concrete syntax treeCoSy(p); the derivation can be
defined again through a graph transformation fromCoSyL-typed graphs toAbSyL-typed graphs. What
happens during this transformation is obviously specific toL, but typically it will involve the merging
and removal of redundant syntactic elements, as well as name resolution.

Example. The abstract syntax ofXL rearranges the statement types in an abstraction hierarchy and
unifies all label identifiers. The resulting type graphAbSyXL as well as the example instanceAbSy(xp)

2What we describe may be called aconcrete syntax tree; it is actually more common to work with so-calledabstract
syntax trees, in which those syntactic elements that were merely there to ease the job of the parser have been removed. This
is in fact a step towards ourabstract syntax graphsdescribed below. To avoid confusion we concentrate on concrete syntax
trees in this proposal.

Meta−model

Model

a

Label

Stat

EndBeginProgProg

go

Id

Stat

Id

Label

.;Stat

GoTo

go

GoTo

Begin End

LabelLabel

GoTo

a

a

Static semanticsAbstract syntaxConcrete syntax

nxt

nxt
.

a

Label

Prog

Label

Id

LabelGoTo

Stat

LabelGoTo

a

Prog;

Prog

Prog

;

Stat

GoTo Stat

Label

def

sub

flow

sub

nxt

sub

nxt

nxt nxt

nxt

usesub

sub

nxt

sub

nxt

sub

def

nxt

sub

use

nxt sub

flow

sub

flow
flow

flow

def

flow

use

defdefdefsubsubsub

use

nxt

sub

sub

sub

nxt

sub sub sub

subsub

sub

Figure 2: Example meta-models and models for the programxp: “ a; go a; a. ”

5



are shown in the second column of Figure 2. The transformation from the concrete to the abstract syn-
tax involves removing the intermediateStat-nodes (while maintaining thenxt-ordering) and merging
Id-nodes with identical names.

Static Semantics.The static semantics of a program is typically expressed using a collection of mod-
els, including, for instance, flow, data, call and dependency graphs. In this project we take the position
that these can fruitfully be combined into a single model, possibly at the loss of ready visualization
but certainly at the gain of consistency. The separate models can be recaptured asviewsupon this
combined model. Again, the static semantics of a languageL can be specified through a meta-model,
StSeL; instances can be derived from the abstract syntax graphs through graph transformation.

Example. The static semantics ofXL addsBegin- and End-nodes and control flow to the abstract
syntax graph, as mentioned above. The meta-modelStSeXL and example modelStSe(xp) are given in
the third column of Figure 2. The transformation rule for aLabel-statement just converts the outgoing
nxt-edge into aflow-edge; the rule for aGoTo-statement creates aflow-edge to allLabel-statements
def ining the label identifierused by theGoTo.

Dynamic Semantics.In contrast to the aspects discussed so far, the dynamics of a software system
will be described not by one single model, but by a collection of snapshots with a transition relation
between them. Each of these snapshots can be modeled as an extension of the static semantics model
with run-time information; in language implementation terms, the run-time information consists of
(abstractions of) the stack and heap of a program. Together this gives rise to a state-transition system,
which can be seen as the behavioral model of the system.

Once more, we can capture the structure of the snapshots in a meta-model,DySeL. It will gen-
erally extend the static semantics (StSeL) with the types of run-time information mentioned above.
Transformation rules in this context play a different role than before: rather than collectively describ-
ing the construction of one model for a given programp from another (concrete to abstract syntax to
static semantics), now each rule will describe a (small) step in the execution ofp; in other words, each
rule acts as a graph-based virtual machine instruction.

Example. Figure 3 shows the meta-modelDySeXL (which adds a node typeVM for the “virtual
machine” executing a given program and an edge typepc for the “program counter” pointing to the
statement under execution) as well as the transition system modeling the behavior ofxp.

End

VM

Begin End

LabelLabel

GoTo

VM

Begin

pc

pc

pc

pc

pc

Meta-model

LabelLabel

GoTo

VM

End

LabelGoTo

EndBegin

StatVM

Begin

Label

VM

Begin End

LabelLabel

GoTo

GoTo

LabelLabel

GoTo

VM

Begin End

Labelflow
pc

Figure 3: Dynamic semantics of the example program

6



Meta-languageAs discussed and illustrated above, the key idea is to describe all essential elements
of SL definitions using (type) graphs, and the relationship between these elements using graph trans-
formations. Thus, graphs and graph transformations are the core of the meta-language (the LDL)
which this project is out to define. We rely on the extensive research in graph transformations to pro-
vide us with results on simulation and verification and algorithms for automatic parsing, synthesis and
transformation of models. This establishes a common basis for a more precise definition of language
aspects, and thereby a foundation on which a theory of correctness-preserving, intra- or inter-language
model transformations can be built — thus addressing, and hopefully closing, one of the main gaps in
the road towards realizing the benefits of the MDA approach.

6.4 Project Objectives

We define the following steps/milestones in the project:

1. A case study consisting of aprogramminglanguage definition, addressing all aspects mentioned
above, for a realistic fragment of an existing programming language, such as Java. (Preliminary
work in this direction has been done in two MSc theses: see [8, 23].)

2. A case study consisting of aspecificationlanguage definition, addressing all aspects mentioned
above; for instance, UML state diagrams. The intention here isnot to define a new semantics
but to formulate one of the existing semantic definitions in terms of graphs and transformations,
along the lines described above; see, e.g., [47] for the feasibility of such a semantics.

3. An initial definition of an LDL in which at least the language concepts identified in the case
studies can be specified. This requires an understanding of these concepts on an abstract enough
level. At this stage, especially the abstract syntax and semantics of the LDL are of interest.

4. A concrete syntax for the LDL, once the initial definition (previous step) is stable.

5. In parallel with two the steps above and partly driving them, the (re)formulation of the case
study language definitions (steps 1 and 2) in terms of the LDL being developed.

6. The development of tools for compiling LDL “programs” (i.e., SL specifications), which means
the creation of the meta-models and graph transformation systems.

7. The complete definition of the case study languages (steps 1 and 2) in the LDL.

All in all, the outcome of the project is a language definition language with formal semantics and
(light-weight) tool support, and the formal definition of a realistic programming and a specification
language in the LDL.

6.5 Other Related Work

This project has clear connections with work in graph rewriting and other approaches to the specifi-
cation and verification of behavioral semantics, as well as the development of formal foundations for
UML and MDA.

Graph rewriting. An authorative and comprehensive overview of the theory and practice of graph
rewriting can be found in [45, 15]. Graph rewriting has been applied before in models of computation;
see, e.g., [7, 16, 14, 11]. Our own project GROOVE [20, 4] investigates the combination of graph
rewriting and verification techniques (in particular, model checking).

Within software engineering there are several currently very active areas of application of graph
rewriting, such as software evolution (e.g., [30]) and UML model and meta-model semantics (e.g.,
[19, 21, 26, 47]).

7



Behavioral semanticsBoth process algebra ([10]) and programming language theory (e.g., [48]) have
developed a rich theory of behavioral semantics, from which we intend to benefit in this project. In fact
the graph transformation semantics we intend to pursue is obviously a form of operational semantics,
and it seems natural to incorporate a form of SOS (Structural Operational Semantics, see [6]) into our
LDL. Another connection exists toterm graph rewriting[9], which is indeed a technique for graph
transformation-based operational semantics of functional languages.

Formal foundations for UML. There are many research groups investigating semantics for UML;
e.g., the aforementioned statechart semantics [27] and graph rewriting approaches [26], but also the
work carried out in the pUML group [17, 25, 37]. The difference with this project is that we are not
interested in any particular semantics, but with the means to define them systematically for a given
SL.

6.6 Embedding within own existing activities

Software Engineering chair. Within the software engineering group, a number of topics are being
studied, some pertaining to various stages of the software development process, others to the process
itself. The principal themes are (i)Aspect-Oriented Software Composition, (ii) Synthesis Based Soft-
ware Architecture Design, (iii) Soft Computing applied to Software Development, and (iv)Design for
Correctness. The current proposal falls into (iv) and (to a lesser degree) in (ii).

Klasse Objecten. The core activities of Klasse Objecten are consultancy and training in software
design through modeling, using UML, OCL and MDA. From 1997 Klasse Objecten has been actively
involved in creating the UML and OCL standards. The knowledge gained by this participation is cru-
cial for the company. In the coming years the subject of MDA will become more and more important
to (clients of) Klasse Objecten. Therefore it is necessary for Klasse Objecten to be involved in the
development of stable foundations for the application of MDA.

Principal investigator. Arend Rensink moved to the area of graph transformation in 2001, after
having done research in process algebra-related fields for close to a decade. His particular interest
is the application of graphs as software models and graph transformations to describe the dynamics
of those models; this raises opportunities for software modeling and verification that are new in the
context of the (otherwise quite well-established) area of graph transformations. Apart from a number
of conference publications (see reference section), the research has resulted in the development of a
tool environment called GROOVE [38], to be developed further in an NWO project of the same name
[20] started recently. The current project dovetails onto GROOVE very nicely, since the LDL to be
developed here will allow to provide graph transformation semantics to SLs that can then be fed into
the GROOVE tool.

7 Work Programme

Planning. The tasks described below refer to the enumeration in the project objectives (Section 6.4).

Tasks 1 2 3 4 5 6 7
Year 1 X X X
Year 2 X X X X
Year 3 X X X
Year 4 — Consolidation and PhD thesis —

Education. It is anticipated that the OiO takes part in the regular IPA courses. Depending on the
background of the OiO, he will also participate in a selection of (international) Master courses.

8



9 Literature

Key publications of the research team

[1] D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom? on the automated verification
of linked list structures. InThe 24th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), Lecture Notes in Computer Science. Springer-Verlag, 2004. To appear.

[2] A. Kleppe, J. Warmer, , and W. Bast.MDA Explained; The Model Driven Architecture: Practice and
Promise. Object Technology Series. Addison-Wesley Pub. Co., 2003.

[3] A. Rensink. Canonical graph shapes. In D. A. Schmidt, editor,Programming Languages and Systems —
European Symposium on Programming (ESOP), volume 2986 ofLecture Notes in Computer Science, pages
401–415. Springer-Verlag, 2004.

[4] A. Rensink. The GROOVE simulator: A tool for state space generation. In J. Pfalz, M. Nagl, and B. Böhlen,
editors,Applications of Graph Transformations with Industrial Relevance (AGTIVE), volume 3063 ofLec-
ture Notes in Computer Science, pages 479–485. Springer-Verlag, 2004.

[5] J. Warmer and A. Kleppe.The Object Constraint Language: Getting Your Model Ready for MDA. Object
Technology Series. Addison-Wesley Pub. Co., second edition, 2003.

Other references

[6] L. Aceto, W. Fokkink, and C. Verhoef. Structural operational semantics. In Bergstra et al. [10], chapter 3,
pages 197–292.

[7] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske, D. Plump, A. Schürr, and
G. Taentzer. Graph transformation for specification and programming.Science of Computer Program-
ming, 34:1–54, 1999.

[8] M. Arends. Graph grammars for Java bytecode simulation. Master’s thesis, University of Twente, 2003.

[9] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R. Kennaway, M. J. Plasmeijer, and M. R.
Sleep. Term graph rewriting. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, editors,PARLE: Par-
allel Architectures and Languages Europe, Volume I, volume 259 ofLecture Notes in Computer Science,
pages 142–158. Springer-Verlag, 1987.

[10] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors.Handbook of Process Algebra. Elsevier, 2001.

[11] A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro. Translating java into graph transformation systems. In
Parisi-Presicce et al. [35].

[12] S. Demeyer, S. Ducasse, and S. Tichelaar. Why unified is not universal? UML shortcomings for coping
with round-trip engineering. In R. France and B. Rumpe, editors,Proc. UML ’99 —- The Unified Modeling
Language: Beyond the Standard, volume 1732 ofLecture Notes in Computer Science, pages 630–644.
Springer-Verlag, 1999.

[13] D. Distefano, A. Rensink, and J.-P. Katoen. Model checking birth and death. In R. Baeza-Yates, U. Mon-
tanari, and N. Santoro, editors,Foundations of Information Technology in the Era of Network and Mobile
Computing, volume 223 ofIFIP Conference Proceedings, pages 435–447. Kluwer Academic Publishers,
2002.

[14] F. L. Dotti, L. Foss, L. Ribeiro, and O. M. dos Santos. Verification of distributed object-based systems.
In E. Najm, U. Nestmann, and P. Stevens, editors,Formal Methods for Open Object-based Distributed
Systems, volume 2884 ofLecture Notes in Computer Science, pages 261–275. Springer-Verlag, 2003.

[15] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors.Handbook of Graph Grammars and
Computing by Graph Transformation, volume II: Applications, Languages and Tools. World Scientific,
Singapore, 1999.

9



[16] H. Ehrig and G. Taentzer. Computing by graph transformation, a survey and annotated bibliography.Bull.
Eur. Ass. Theoret. Comput. Sci., 59:182–226, 1996.

[17] A. S. Evans and S. Kent. Meta-modelling semantics of UML: the pUML approach. InProc. UML ’99
—- The Unified Modeling Language: Beyond the Standard, volume 1732 ofLecture Notes in Computer
Science. Springer-Verlag, 1999.

[18] H. Giese, J. Graf, and G. Wirtz. Closing the gap between object-oriented modeling of structure and
behaviour. In R. France and B. Rumpe, editors,Proc. UML ’99 —- The Unified Modeling Language:
Beyond the Standard, volume 1732 ofLecture Notes in Computer Science, pages 534–549. Springer-
Verlag, 1999.

[19] M. Gogolla, P. Ziemann, and S. Kuske. Towards an integrated graph based semantics for UML. In
P. Bottoni and M. Minas, editors,Proc. ICGT Workshop on Graph Transformation and Visual Modeling
Techniques, Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers B.V., Oct.
2002.

[20] Groove: Graphs for object-oriented verification, 2004. Research project funded by the Dutch NWO, Grant
612.000.314.

[21] E. Guerra and J. de Lara. Event-driven grammars: Towards the integration of meta-modelling and graph
transformation. In Parisi-Presicce et al. [35].

[22] B. Henderson Sellers and F. Barbier. Black and white diamonds. In R. France and B. Rumpe, editors,
Proc. UML ’99 —- The Unified Modeling Language: Beyond the Standard, volume 1732 ofLecture Notes
in Computer Science, pages 550–565. Springer-Verlag, 1999.

[23] H. Kastenberg. Software metrics as class graph properties. Master’s thesis, Department of Computer
Science, University of Twente, July 2004.

[24] A. Kleppe and J. Warmer. Do MDA transformations preserve meaning? an investigation into preserving
semantics. InMDA Workshop, York, Nov. 2003.

[25] A. Kleppe and J. Warmer. Unification of static and dynamic semantics of UML: A study in redefining
the semantics of UML using the pUML OO meta modelling approach. Technical report, Klasse Objecten,
2003. Available fromhttp://www.klasse.nl .

[26] S. Kuska, M. Gogolla, R. Kollmann, and H.-J. Kreowski. An integrated semantics for UML class, object
and state diagrams based on graph transformation. In M. Butler, L. Petre, and K. Sere, editors,IFM 2002,
volume 2235 ofLecture Notes in Computer Science, pages 11–28. Springer-Verlag, 2002.

[27] D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics of uml statecharts di-
agrams. InThe 3rd International Conference on Formal Methods for Open Object-Based Distributed
Systems. Kluwer Academic Publishers, 1999.

[28] MDA guide version 1.0.1, June 2003. Available fromhttp://www.uml.org .

[29] B. Meek. The static semantics file.ACM Sigplan Notices, 25:33–42, Apr. 1990.

[30] T. Mens. Conditional graph rewriting as a domain-independent formalism for software evolution. In Nagl
et al. [32], pages 127–143.

[31] T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough, editors.On Extracting Static Semantics, volume
2566 ofLecture Notes in Computer Science. Springer, 2002.

[32] M. Nagl, A. Scḧurr, and M. M̈unch, editors. Applications of Graph Transformations with Industrial
Relevance, volume 1779 ofLecture Notes in Computer Science. Springer-Verlag, 2000.

[33] OMG. Meta object facility (MOF) specification, Apr. 2002. Seehttp://www.uml.org .

[34] MOF 2.0 Query / Views / Transformations request for proposals, Apr. 2004. Available from
http://www.uml.org .

[35] F. Parisi-Presicce, P. Bottoni, and G. Engels, editors.Second International Conference on Graph Trans-
formation, Lecture Notes in Computer Science. Springer-Verlag, 2004.

10

http://www.klasse.nl
http://www.uml.org
http://www.uml.org
http://www.uml.org


[36] D. C. Petriu and Y. Sun. Consistent behaviour representation in activity and sequence diagrams. In
A. Evans, S. Kent, and B. Selic, editors,Proc. UML 2000 — The Unified Modeling Language: Advancing
the Standard, volume 1939 ofLecture Notes in Computer Science, pages 369–382. Springer-Verlag, 2000.

[37] The precise uml group. Seehttp://www.cs.york.ac.uk/puml/ .

[38] A. Rensink. GROOVE: A graph transformation tool set for the simulation and analysis of graph grammars.
Available athttp://www.cs.utwente.nl/˜groove , 2003.

[39] A. Rensink. A logic of local graph shapes. CTIT Technical Report TR–CTIT–03–35, Faculty of Infor-
matics, University of Twente, Aug. 2003.

[40] A. Rensink. Towards model checking graph grammars. In M. Leuschel, S. Gruner, and S. L. Presti,
editors,Proceedings of the3rd Workshop on Automated Verification of Critical Systems, Technical Report
DSSE–TR–2003–2, pages 150–160. University of Southampton, 2003.

[41] A. Rensink. Agtive’03: Summary from the outside in. In J. Pfalz, M. Nagl, and B. Böhlen, editors,
Applications of Graph Transformations with Industrial Relevance (AGTIVE), volume 3063 ofLecture
Notes in Computer Science, pages 486–488. Springer-Verlag, 2004.

[42] A. Rensink. Representing first-order logic using graphs. In F. Parisi-Presicce, P. Bottoni, and G. En-
gels, editors,International Conference on Graph Transformations, Lecture Notes in Computer Science.
Springer-Verlag, 2004. To appear.

[43] A. Rensink. Time and space issues in the generation of graph transition systems. InInternational Work-
shop on Graph-Based Tools (GraBaTs), Electronic Notes in Theoretical Computer Science. Elsevier Sci-
ence Publishers, 2004. To appear.

[44] A. Rensink,Á. Schmidt, , and D. Varŕo. Model checking graph transformations: A comparison of two
approaches. In F. Parisi-Presicce, P. Bottoni, and G. Engels, editors,International Conference on Graph
Transformations, Lecture Notes in Computer Science. Springer-Verlag, 2004. To appear.

[45] G. Rozenberg, editor.Handbook of Graph Grammars and Computing by Graph Transformation, volume
I: Foundations. World Scientific, Singapore, 1997.

[46] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Modeling Language Reference Manual. Object
Technology Series. Addison-Wesley Pub. Co., 1999.

[47] D. Varró. Automated formal verification of visual modeling languages by model checking.Journal of
Software and Systems Modelling, 2003.

[48] G. Winskel. The Formal Semantics of Programming Languages. Foundations of Computing Series. The
MIT Press, 1993.

11

http://www.cs.york.ac.uk/puml/
http://www.cs.utwente.nl/~groove

	Description of the Proposed Research
	Context of the Proposed Research
	Problem Description
	Approach
	Project Objectives
	Other Related Work
	Embedding within own existing activities

	Work Programme
	Literature

