
Identifying Crosscutting Concerns in Requirements Specifications

Lars Rosenhainer
Department of Computer Science

Chemnitz University of Technology
09107 Chemnitz, Germany

lars.rosenhainer@informatik.tu-chemnitz.de

Abstract

Identifying and documenting early crosscutting con-
cerns, i.e. requirements-level crosscutting concerns, is crit-
ical. It improves traceability among requirements as well
as between requirements and downstream artifacts, facil-
itates easier assessment of change impact, supports re-
quirements evolution, enables the application of aspect-
orientation from the very start of the software lifecycle and
prevents easy oversight of crosscutting influences. However,
the identification of requirements-level crosscutting con-
cerns has been neglected in countless software projects but
may—with the growing dissemination of aspect-oriented
approaches—retroactively become relevant for some or
even many of them. This paper, therefore, describes an ap-
proach to the identification problem from an aspect-mining
point of view, i.e. to identify crosscutting elements in pre-
existing requirements specifications, and gives reasons why
such an approach is highly desirable. Two techniques for
aspect mining from these documents are suggested. Fur-
ther, some preliminary results of a case study conducted to
confirm the feasibility of the approach, are presented.

1 Introduction

Developing software for industries and organizations is
typically a highly complex undertaking since the software
to be developed is itself of a highly complex nature, often
comprising several million lines of code. A large number
of needs, wishes, requirements—often from different view-
points and oftentimes conflicting with each other—must be
harmonized to find a solution respecting the diverse inter-
ests. Software development, therefore, has to deal with a
large number of concerns. Some concerns are related to the
product (the software) to be developed, e.g. functionality
and performance. Other concerns are related to the devel-
opment process itself, e.g. development cost and time. Sut-
ton Jr. and Rouvellou [15] have thus proposed a definition

of the termconcernas being ”any matter of interest in a
software system”—a definition that will be followed in this
paper.

Separation of concerns[7] (SoC) is a basic principle
of software engineering. Derived from common sense, it
essentially means that dealing successfully with complex
problems is only possible by dividing the complexity into
sub-problems that can be handled and solved separately
from each other. The partial solutions can then be com-
bined to a complete solution. One incarnation of the SoC
principle is modularization: each module is responsible for
certain concerns of a software system, all modules together
realize all the concerns of the software system.

Whereas—by means of conventional techniques of mod-
ularization or object-orientation—one sort of concerns may
smoothly be encapsulated within building blocks such as
modules, classes, and operations on design or code level,
the same is not possible for another sort of concerns. They
crosscut the design or implementation of several or even
many building blocks and are therefore calledcrosscutting
concerns. Typical examples for crosscutting concerns in-
clude logging, synchronization and distribution. Due to
their very nature, crosscutting concerns entail two main
problems for software development. First, their design or
implementation is scattered over many building blocks (the
scatteringproblem) and second, one building block often
comprises the design or implementation of more than one
concern (thetangling problem). Scattering and tangling
have a number of well-known negative implications for the
software affected by them. However, aspect-oriented soft-
ware development (AOSD) aims at alleviating these prob-
lems by modularizing crosscutting concerns. They are
encapsulated by modular artifacts calledaspectsand thus
banned to separate locations. AOSD is therefore an ap-
proach to further expanding the SoC principle in software
development.

In addition, it does not suffice to pursue aspect-oriented
approaches during design and downstream activities alone
since crosscutting concerns are not confined to the artifacts

dealt with there. Rather, it is beneficial to support aspect-
orientation from the very beginning of the software lifecy-
cle. To substantiate this claim the next section introduces
the notion of ”crosscutting requirement”, a special kind of
crosscutting concern, and section 3 explains then why it is
desirable to identify and document them as well as their in-
fluences on other requirements. In section 4, some stages in
software development and maintenance are suggested when
identification and documentation activities are conceivable.
Since we cannot expect that crosscutting requirements are
always identified early, i.e. during requirements analysis,
section 5 explains the usefulness of approaching the identi-
fication problem from an aspect-mining point of view, i.e. to
search for crosscutting requirements in already existing re-
quirements specifications, and suggests two techniques for
accomplishing this task. Section 6 presents some prelimi-
nary results of a case study conducted to confirm the fea-
sibility of this approach. Section 7 then discusses related
work, and finally, section 8 describes conclusions and fu-
ture work.

2 What are crosscutting requirements?

In the context of requirements engineering (RE) the con-
cerns of central interest arerequirements. A requirement
is a special kind of concern. A well-written requirements
specification is characterized by the fact that each require-
ments statement does not mix several requirements but rep-
resents exactly one requirement, i.e. exactly one concern. In
a similar vein, for example Robertson and Robertson [12, p.
157f] recommend to express each requirement in one sen-
tence only and to avoid complex sentences since they might
contain more than one requirement.

In addition, good traceability—being a critical quality
factor—is expected from well-written requirements specifi-
cations (cf. e.g. ANSI/IEEE Std 830-1984 [2]). Among
others, it is an important precondition for making ex-
plicit the many semantic relationships that normally ex-
ist between different requirements. Examples of such
relationships include interdependencies, elaborations and
part/whole relationships (cf. e.g. [9]).

A special type of relationship among requirements is
one that may be qualified as crosscutting. A requirement
A crosscuts requirement B if a software decomposition has
been chosen in which B cannot be satisfied without taking A
into account. Thus design elements or code can only satisfy
B if they provide for A as well. Requirements that cross-
cut others are referred to as beingcrosscutting requirements
(A in this case). Further, the expressioncrosscutting influ-
enceis used as a synonym for the relationship between two
requirements which is established by one crosscutting the
other. If it is said that A has crosscutting influenceon B
it additionally denotes the relationship’s direction, namely

that A crosscuts B.
A crosscutting influence is a certain dependency among

requirements. However, not all requirements dependencies
are of a crosscutting nature. To relate the notion of “cross-
cutting influence” to traditional types of dependencies, one
of several existing taxonomies devised for the classification
of dependency types has been used. It is Pohl’s [8] taxon-
omy. Altogether, it contains eighteen different dependency
types of which there is only one, though, that seems to cover
crosscutting influences, namely “constraint”. Pohl does not
provide a definition of what exactly he understands by a
constraint dependency type but gives an example that sug-
gests the type’s basic meaning as one requirement impos-
ing some restriction on another one. Since such restrictions
always have an impact on the manner the affected require-
ment may be satisfied, the constraint notion fits well with
the definition of “crosscutting” given earlier. The following
three examples show cases where one requirement is con-
straining the other and which are therefore considered as
crosscutting:

• The response-time requirement “all system responses
shall occur within 10 seconds” constraints the interop-
erability requirement “the system shall be interopera-
ble with the XYZ platform.”

• The functional requirement “when requested, the sys-
tem shall display a user’s name, date of birth, and ad-
dress” is constrained by the security requirement “only
authenticated users are allowed to view personal data.”

• The functional requirement “when requested, the sys-
tem shall download component updates from respec-
tive ftp mirror sites” is constrained by the functional
requirement “if a connection to ftp mirror sites can-
not be established within a specified timeout period the
system shall cancel the download process.”

In all these examples, constraint dependency will eventu-
ally become visible in system behavior satisfying both re-
quirements at the same time. This is a sure sign for this
dependency type’s crosscutting nature.

An important characteristics of crosscutting influences is
that they may be obvious but need not be. They are obvi-
ous if clear references to other requirements (for example
as numbers or textual references) exist and thus make the
respective interdependencies explicit. Crosscutting influ-
ences are more subtle if clear references do not exist and it
can therefore not easily be concluded from reading a cross-
cutting requirement that it is crosscutting or, in case it is
known that it is, on which other requirements it has influ-
ence. In these cases crosscutting influences are not (or not
explicitly enough) documented on the requirements’ repre-
sentation level (which is normally a natural language text

possibly augmented by some semi-formal or formal defini-
tions). For example, if a requirement demands the system’s
conformance to ISO 4217 we may infer its crosscutting na-
ture either from background knowledge since we know that
the requirement is constraining how other requirements may
be implemented, or from such textual cues as “conform”
or “ISO”. However, our conclusion is not based on a clear
reference. Furthermore, we cannot easily see on which re-
quirements the requirement has influence since the individ-
ual dependencies are hidden behind a general statement. All
we might deduce is that it is related to requirements having
something to do with currency symbols.

Thus even if we do not find obvious tangling on the re-
quirements’ representation level there may, and in fact there
does exist crosscutting influences beyond the representation
level. These are dangerous since they may be overlooked in
subsequent development stages. Moreover, they are a likely
origin for tangling on the design or code levels. Such hidden
influences are especially true for many non-functional re-
quirements since these are normally stated in a global man-
ner.

3 Why identify crosscutting requirements?

Ideally, a requirements specification would document all
crosscutting influences as well as all other semantic rela-
tionships among requirements. Reality, however, is quite
different. Even if each requirements statement does address
only one concern and is traceable as well, not all semantic
relationships between requirements are identified and ex-
plicitly recorded in most cases. The main reason for this is
the fact that there normally is not enough time in a software
project to transform a sub-optimal specification into an op-
timal one characterized by complete traceability. However,
if some of the relationships among requirements (such as
crosscutting influences) are obscure, developers run the risk
of forgetting about them. At best they detect these influ-
ences in later development phases and are able to react ac-
cordingly. At worst some influences remain hidden until
after delivery of the software system and are then indirectly
discovered by users because some requirements are not to-
tally fulfilled by the software. In both cases increased costs
will be the result of the requirements deficiencies (the later
the detection the higher the costs). The second case may
in addition give rise to other troubles such as loss of good
faith in the developers or even the disastrous failure of crit-
ical system components.

Hence, to stress the importance of identification and doc-
umentation of crosscutting requirements and influences we
will briefly have a look at three exemplary requirements is-
sues.

R1

CCR3

R2 C1

t1

t2

t3

t4

Requirements Design

R4

R5

t5

Figure 1. Assessing the impact of change

3.1 Impact of change

An example will illustrate how documentation of cross-
cutting requirements and influences makes it easier to assess
the impact of change. On the left-hand side of Fig. 1 there
are five requirements R1, R2, CCR3, R4, and R5. CCR3 is
a crosscutting requirement. It crosscuts R1 and R4, which
is denoted by the arrows t4 and t5, respectively. On the
right-hand side there is a design component C1 satisfying
the first three of the requirements, which is denoted by the
three arrows t1, t2, and t3.

Now, C1 is to be altered. Thus it must be checked
whether the first three requirements (and possibly any code
which is not depicted in the figure) are affected by the
change. This check is possible due to the traceability links
t1 to t3. It then emerges that C1’s change should be re-
flected in tightening CCR3. If the latter’s crosscutting in-
fluences are documented (as depicted in the figure by t4
and t5), then it is easy to find the requirements that are im-
pacted by CCR3, namely R1 and R4. It is then possible to
find out what, if any, consequences a change of CCR3 will
have for them. If, however, t4 and t5 are unknown an an-
alyst must first check any other requirement (i.e. R1, R2,
R4, and R5) whether or not it is affected by a change of
CCR3. Such work is frustrating and involves unnecessary
costs since thought processes have to be repeated that were
already thought out previously while first modeling the re-
quirements and designing C1.

3.2 Requirements evolution

As may be expected, being capable of assessing the im-
pact of change among requirements in a sufficient manner is
an important pre-requisite for requirements evolution. Thus
comprehensive documentation of crosscutting requirements
and influences also facilitates easier requirements evolution.
To demonstrate this, an example will be used again.

A requirements specification might, among others, state
the following requirements for some CAD-based system:

FR-1.1: The system shall generate raw parts from DIN
4000 norms.
FR-1.2: A system message shall confirm the perfor-
mance of the operation described in FR-1.1.
PR-2: All system responses on user interactions shall
occur within 30 seconds.

The first two requirements (FR-1.1 and FR-1.2) are func-
tional whereas the third (PR-2) is a performance require-
ment. Although it can be said with confidence that each
of these three requirements statements represents exactly
one concern, there is the problem that PR-2 is a global re-
quirement crosscutting all other requirements dealing with
system responses (such as FR-1.2). Moreover, the cross-
cutting influences of PR-2 are obscure since it contains no
clear respective references to the influenced requirements.
(FR-1.2 is also crosscutting but contains a clear reference to
the influenced requirement FR-1.1. Therefore, for the sake
of brevity, we will not consider FR-1.2’s crosscutting na-
ture any further.) Furthermore, an inspection performed on
the specification reveals that FR-1.2 is ambiguous. It is not
clear when the message shall occur: at the beginning, in the
middle, or at the end of the generation process? Therefore,
a requirements engineer may want to clarify this and think
about changing FR-1.2 in the following way:

FR-1.2: A system message shall confirm the comple-
tion of the operation described in FR-1.1.

Though this wording solves the ambiguity problem, it
equally brings up an even greater problem. Since raw part
generation is normally a computing-time intensive process,
FR-1.2 now (very probably) conflicts with PR-2. Thus the
planned hardware/software solution can (very probably) not
satisfy both requirements at the same time. If the influences
PR-2 has on FR-1.2 are not documented, this inconsistency
may go undetected for a longer time and finally lead to the
sort of troubles described earlier. If, however, PR-2’s in-
fluence on FR-1.2 is documented, it is relatively easy for
the requirements engineer to realize the potential conflict
between them. Therefore, the engineer’s final version of
FR-1.2, being precise enough and no longer in conflict with
PR-2, might read:

FR-1.2: A system message shall inform the user about
the progress of the operation described in FR-1.1 from
start to end.

3.3 No overlooked crosscutting influences

If done early enough, identification and documentation
of crosscutting requirements and their impact on other re-
quirements (which may, of course, be crosscutting them-
selves) brings about another important advantage: not to
overlook them in subsequent phases. Provided that the

crosscutting influences on a certain requirement are docu-
mented, it is easily possible to take them into account when
design or code artifacts are derived from it or some corre-
sponding maintenance task is performed. Otherwise, espe-
cially if the requirements specification is voluminous it is
fairly easy for an architect, programmer or maintainer to
unintentionally overlook some crosscutting influences and
ignore them in their work.

Crosscutting influences that are documented also al-
low to manually, semi-automatically or—with a sufficient
degree of formalization—even automatically derive corre-
sponding test cases from the requirements influenced or
from the crosscutting requirements themselves. It would for
example be possible to semi-automatically generate perfor-
mance test cases for requirement PR-2 (cf. section 3.2). In
contrast, it is easily possible to forget to provide sufficient
test cases for crosscutting requirements if crosscutting in-
fluences are not explicitly recorded. And this becomes even
easier the closer a deadline approaches!

4 When to identify crosscutting requirements

There are several stages of the development and mainte-
nance processes when identification and documentation of
crosscutting requirements and influences are conceivable.
These will briefly be discussed in turn:

• while requirements modeling: After requirements have
been elicited they should be modeled. Modeling is a
highly analytic activity whose goals are for example
to structure the requirements (normally top-down), to
identify and model dependencies and other relations
among them, to identify and eliminate inconsistencies
and to identify and clarify ambiguities and vagueness.
It would of course also be natural and highly desirable
to identify and model crosscutting requirements and
influences already at this stage.

• while writing the requirements specification: Writing a
specification normally follows requirements modeling.
However, it is often the case that a specification is writ-
ten directly after requirements have been elicited thus
bypassing the modeling stage. In this case writing the
specification is a highly analytic process as well. Obvi-
ously, it should then also include identifying and doc-
umenting crosscutting requirements and influences.

• after writing the requirements specification: Although
it is best to identify and document crosscutting re-
quirements and influences when they arise, i.e. dur-
ing requirements analysis, we have to face the fact
that countless requirements specifications exist, writ-
ten without the aspect of crosscutting requirements in

mind. With hindsight however, it may become de-
sirable for developers to identify them in such docu-
ments. It then becomes necessary to “mine” (see sec-
tion 5) crosscutting requirements and influences from
them.

• during downstream activities: The crosscutting nature
of some requirements and their influences may and
will of course also be detected during activities later in
development or maintenance and should then be docu-
mented.

5 Aspect mining from requirements specifi-
cations

From the stages mentioned in the previous section the
third one, namely “after writing the requirements specifi-
cation”, is of central interest to us. The research work de-
scribed here therefore focuses on the identification of cross-
cutting requirements and influences from an aspect-mining
[4] point of view. Aspect mining is a term coined for
the identification of aspects (which encapsulate crosscutting
concerns) in some pre-existing requirements or design doc-
uments, code and other development artifacts. Aspects are
normally not on the surface of these artifacts but must be
“mined” from them. The artifacts we are interested in are
requirements specifications.

Aspect mining from requirements specifications is rea-
sonable since countless ones already exist, written without
any consideration of crosscutting concerns. Furthermore,
it seems to be realistic not to expect aspect-orientation in
RE to become a widely-accepted approach in the near fu-
ture in order so as to be applied from the early stages of
software projects. Therefore many more documents with
these shortcomings will be created in the future as well. For
these reasons, aspect mining is already needed and—with
the increasing dissemination of aspect-orientation in soft-
ware industry—will even much more be needed to open the
way to finding and documenting hidden crosscutting con-
cerns in already existing specifications and thus enhance
their quality and usefulness.

For the purpose of mining crosscutting requirements and
influences from requirements specifications, two conceiv-
able techniques will now be suggested, the first being man-
ual, the second being semi-automatic.

• identification through inspection: After a requirements
specification (or some part of it) has been written it
should be inspected to identify and document any sorts
of deficiencies (e.g. omissions, inconsistencies, typos,
etc.). It would therefore be straightforward to read
the specification with the particular aspect of identify-
ing crosscutting requirements and influences in mind.

From our own experience it is for example recom-
mendable to start from a given non-functional (and
probably crosscutting) requirement, say response time,
and then search in the text for statements mentioning
some system response. If such a statement has been
found the inspector notes it down. After the inspection
has been finished the collected statements must be an-
alyzed whether they reflect requirements constrained
(see section 2) by the response-time requirement. If
so, a crosscutting influence has been located and will
be documented. If at least one crosscutting influence
has been found the response-time requirement is then
marked as being a crosscutting requirement.

• identification supported by information retrieval tech-
niques: It is also possible to support the identifica-
tion of crosscutting requirements and influences by
means of information retrieval (IR) techniques. A pro-
gram may for example find statements that seem to be
affected by a requirement the analyst assumes to be
crosscutting. In a similar manner as above, the ana-
lyst must then examine each statement and document
when a crosscutting influence has been found. Again,
recording at least one crosscutting influence leads to
the requirement’s characterization as being crosscut-
ting.

The IR-based technique is especially promising for vo-
luminous documents. It may be used standalone if, for
example, time is short for performing a full-blown inspec-
tion or in combination with an inspection to detect further
crosscutting influences not identified so far. On the one
hand, inspecting a substantial specification is hard work
where many interesting details (e.g. crosscutting influ-
ences) may be overlooked because of lack of time, fatigue,
or monotony. On the other hand, compared to an IR ap-
proach, inspection has its main strengths in dealing with
the peculiarities of natural language such as ambiguity and
vagueness, and may therefore far easier achieve complete-
ness, i.e. detect all requirements influenced. However,
although completeness is highly desirable even inspection
cannot fully guarantee that completeness has been accom-
plished at some stage since the approach is based on sub-
jective and retroactive judgments.1 Both techniques also
appear to be suitable for an agile approach to identifying
crosscutting influences, i.e. to only search for influences
when it is actually required by some development or main-
tenance task.

1Most traceability approaches—both manual and (semi-) automatic
ones—must cope with a degree of uncertainty with respect to complete-
ness. Further, accomplishing completeness it is not always necessary. E.g.,
in the example given in 3.2 it is not necessary to know of all the require-
ments influenced by PR-2. Instead, knowledge of its crosscutting influence
on FR-1.2 is sufficient.

Property Number
pages 134
complete use cases 35
incomplete use cases 5
complete scenarios 94
incomplete scenarios 9
preconditions, scenario steps, and postconditions 686
quality requirements 110
constraints 10

Table 1. General statistics of RS-Ecom (e-
commerce application)

Property Number
pages 52
higher-level functional requirements 46
higher-level non-functional requirements 12

Table 2. General statistics of RS-Rent (rental
system)

6 Case study

Some examples of crosscutting requirements and influ-
ences which have been identified in two requirements spec-
ifications (RSs) shall be mentioned here to suggest that the
proposed aspect-mining approach is feasible. The study
mainly concentrated on exploring interactions between non-
functional and functional requirements. The specifications
studied by and large conform to general recommendations
on how to write requirements specifications. The semi-
automatic procedure which will be introduced in this sec-
tion works for locating crosscutting influences of response-
time requirements in these specifications and most probably
in others of similar quality. However, currently it cannot be
told definitely whether similar methods work for other non-
functional requirements as well. This will be a matter of
future research.

The first RS (RS-Ecom) studied is use-case based, com-
prises 134 pages and describes an e-commerce application
that allows selling and buying any goods via the internet.
The second one (RS-Rent) is of a more traditional structure
(no use cases), comprises 52 pages, and describes a rental
system allowing renting of arbitrary equipment. Tab. 1 and
2 provide some statistical detail on both documents.

6.1 Results

It is relatively easy to identify crosscutting non-
functional requirements if they are mentioned in a sepa-
rate section especially devoted to non-functional (or “qual-
ity”) requirements. That is the case with the example docu-

quality requirement category RS-Ecom RS-Rent
accuracy • –
authentication • –
authorization • –
data recovery – •
documentation – •
identification • –
immunity • –
integrity • –
intrusion detection • –
latency ◦ –
legislative – •
non-repudiation • –
portability • •
precision • –
privacy ◦ –
response time • •
robustness • –
security – •
system maintenance security • –
timeliness • –
usability ◦ •

Table 3. Crosscutting (CC) quality require-
ment categories in example RSs. (• = surely
or most probably CC; ◦ = potentially CC; – =
irrelevant for the given RS)

ments. The section in RS-Ecom contains 40 different sub-
sections each describing a certain category of quality re-
quirement. Nine of the categories are either irrelevant for
the e-commerce application or are open issues or are not
(fully) defined yet, i.e. the respective section mostly con-
tains a TBD (“to be determined”). Of the remaining 31
categories, there are 14 that are surely or most probably
of crosscutting nature (e.g. response time, authentication,
cf. Tab. 3), 3 that are potentially crosscutting (e.g. privacy,
usability, cf. Tab. 3) and further 9 (e.g. reliability, auditabil-
ity) that may be crosscutting but have so far not been studied
sufficiently to arrive at a definite conclusion. The respective
section in RS-Rent contains 8 subsections each describing
one category of non-functional requirement. There are at
least 7 of the categories with crosscutting character (cf. Tab.
3).

It is not as easy to identify crosscutting functionality not
explicitly mentioned in a subsection. However, study of
RS-Ecom revealed that there is for example some timeout
concern affecting at least three use cases. In this case, the
influence is even observable in the RS’s contents.

Finding the requirements which are crosscut by other
ones is possible by studying the RS with this aspect in mind.
As part of the case study, the functional requirements af-
fected by global response-time requirements in both RSs

were to be identified. The response-time requirements read
as follows:

RT1: All system responses shall occur within 30 sec-
onds. (RS-Ecom)
RT2: The System shall respond to any given command
in an average time of 2 seconds of a user request. (RS-
Rent)

Analyzing crosscutting influences on functional require-
ments only, the search could be constrained to sections on
functional requirements. Since both RSs are of different
types (one is use-cased based, the other not) and therefore
of at least partially different terminology it is uniformly re-
ferred to their most detailed elements asrequirement leaves
(RLs). If an RL is crosscut by some other requirement its
parents (i.e. superior requirements elements) are of course
affected as well. Whereas an RL relevant for the study is
either a scenario step, a precondition, or a postcondition in
RS-Ecom, it is either a requirements description, a precon-
dition, a postcondition, or a “side effect” in RS-Rent.

Inspection as well as IR-based techniques were applied
for finding RLs crosscut by response time in both speci-
fications. Some preliminary experiments showed that the
following simple semi-automatic IR-based procedure is rel-
atively effective for this task:

1. Use regular expressions according to the patterns<SYSTEM
NAME> <WORD STARTING WITH LOW LETTER>
and <SYSTEM NAME> shall <WORD STARTING
WITH LOW LETTER> to find all respective matchings
(e.g.“System responds”or “System shall generate”).

2. Sort the matchings and remove all duplicates.

3. Manually remove all matchings regarded as irrelevant (i.e.
those not related to response time).

4. Find all lines and their contexts by means of regular expres-
sions formed from the remaining matchings.

5. From the results returned, manually find all the lines contain-
ing requirements statements affected by the response time
requirement (e.g.“. . . When requested by a user, the System
shall generate a report containing . . . ”) and sort out all ir-
relevant lines.

In steps 3 and 5 it may be necessary to consult the require-
ments text if a line or its context does not contain sufficient
information for making the right decision. From our own
experience, this was needed more often in step 3 than in step
5. Altogether, however, text consultation was only rarely
necessary.

The results of a comparison between inspection and the
preliminary semi-automatic procedure are summarized in
Tab. 4. For RS-Ecom, inspection was first applied which
identified 178 RLs affected by RT1 in about 161 minutes.
Then by employing the above procedure 179 RLs were
identified, however in only 61 minutes. A review of the
IR-based results revealed that of the found RLs, 178 were

identical to those identified by inspection and one had been
wrongly classified as affected by RT1. Taking the inspec-
tion results as a baseline, the procedure thus yielded maxi-
mal recall at a precision of 99.4% and time savings of about
62%.

Since much information is repeated in different sections
of RS-Rent, it was decided to study two sections separately
from each other. This time starting with the IR-based pro-
cedure, 24 RLs influenced by RT2 were identified in the
first section within 19 minutes. Then inspecting the section
found 27 influenced RLs in 21 minutes. For the second sec-
tion again starting with the procedure, 50 influenced RLs
were found in 16 minutes. Then by means of inspection
52 RLs could be identified in 24 minutes. Analysis showed
that all RLs found in both sections by the IR approach had
been classified correctly. Again taking the inspection results
as a baseline, the IR-based procedure thus yielded a recall
of 88.9% and 96.2%, respectively, both times at a precision
of 100%. However, only for the second section, it brought
significant time savings of about 33.3%.

6.2 Discussion

The results of the case study, in which a relatively large
and two smaller portions of requirements specifications
were analyzed, give rise to the following remarks and pre-
liminary insights.

Crosscutting requirements: The study confirms the ob-
servations of others that not only is it possible to iden-
tify crosscutting requirements in requirements specifica-
tions but also that these documents are “significantly aspec-
tual” [14]. At least 17 of 31 (54.8%) non-functional re-
quirements categories in RS-Ecom and 7 of 8 (87.5%) in
RS-Rent contain clearly or potentially crosscutting require-
ments. Further, some other crosscutting functionality was
found which, however, was not considered in detail.

Time savings: The application of an IR-based technique
seems to be more efficient for large than for small specifica-
tions. For the large RS-Ecom specification part, it achieved
time savings of 100 minutes, which is more than 62%. Time
savings for the small specification parts of RS-Rent were
significantly lower. It may be assumed that the reason for
this result lies in the density of influenced RLs. Whereas in
RS-Ecom there are 178 of 686 (25.9%) RLs affected by re-
sponse time, in the 1st and 2nd sections of RS-Rent there are
only 27 of 51 (52.9%) and 52 of 118 (44.1%) RLs affected,
respectively. The examples seem to suggest a correlation
between density of RLs and time savings–the lower the den-
sity, the higher the time savings. In specifications with low
density of influenced RLs, an IR-based tool can obviously
more intensively function as a filter, saving an analyst from
time-consuming unnecessary reading and leading to more
focused work. For specifications with high density of influ-

Document # pages analyzed # RLs identified time needed comparison of IRT to Insp
Insp IRT IRT errors Insp IRT recall precision time savings

RS-Ecom 110 178 179 1 161 min 61 min 100.0% 99.4% 62.1%
RS-Rent: 1st section 8 27 24 0 21 min 19 min 88.9% 100.0% 9.5%
RS-Rent: 2nd section 21 52 50 0 24 min 16 min 96.2% 100.0% 33.3%

Table 4. Crosscutting influences of response time requirements in example RSs (Insp = Inspection;
IRT = IR-based technique; RLs = requirement leaves).

enced RLs, however, inspection might be more appropriate.
Prior knowledge: The IR-based procedure’s high time

savings and recall for RS-Ecom may in part lie in the prior
knowledge and understanding collected by inspecting the
specification first. Thus it is probable that some decision
during the semi-automatic procedure (to exclude something
from reading or not, an RL is relevant or not, an RL is in-
fluenced or not) was made faster than during inspection and
also more accurate than without prior knowledge. How-
ever, every analyst who has written a certain specification,
possesses prior knowledge which will help with the iden-
tification of crosscutting influences even though he/she has
not specifically paid attention to them before. Moreover, to
get a better impression of how effective and efficient the IR-
based procedure is, the author wanted to exclude the possi-
bility of being influenced by prior inspection results while
semi-automatically analyzing the RS-Rent sections. Thus
the author applied the procedure before inspection and tried
not to use additional knowledge won by inspection of the
first section for the semi-automatic analysis of the second.
Whereas in doing so, no maximum recall could be achieved
(see reasons below), time could always be saved.

Errors during IR-based procedure: Altogether, six
errors (one superfluous RL and five influenced RLs not
detected) have been made during IR-based identification.
Analysis has shown that four of the errors have been made
because of some human mistake (e.g. decision too hasty,
unintentional deletion of relevant RL). Such mistakes could
have been avoided since enough information for making
a right decision had been available. The other two errors
are consequences of line-based searching, which can be
avoided using a better (e.g. sentence-based) approach.

7 Related work

During the last three to five years there has been consid-
erable work around the application of aspect-oriented ap-
proaches in RE. This has, for example, been embodied in
the notion of “early aspects” (e.g. [11]), explicit modeling
of concerns (of which some are crosscutting) [15] and the
interaction of use cases and aspects (e.g. [5, 3]). Although
the necessity of identifying requirements-level crosscutting
concerns has been stated, only few attempts have been made

so far as to how to systematically identify them (e.g. in
[5, 10, 11]). There is also at least one other paper ([14])
that deals with the manual derivation of crosscutting con-
cerns from requirements documents. An important partic-
ularity of all these approaches is the precondition that re-
quirements are modeled from scratch. While modeling the
requirements (as viewpoints, concerns, or use cases) cross-
cutting concerns are identified and modeled as well.

In contrast, our work focuses on the identification of
crosscutting concerns and influences in already existing
requirements documents and augmenting them (or corre-
sponding models) a posteriori. Since it cannot be expected
that aspect-oriented techniques are applied in every project
right from the start and there is the heritage of countless
specifications written without consideration of crosscutting
concerns, it is useful to offer an approach that may be con-
sidered as some sort of aspect mining [4] from these docu-
ments. Its advantage is the chance to uncover and document
hidden crosscutting concerns in them and thus enhance their
quality and usefulness. Thus a retroactive introduction of
aspect-oriented RE approaches into projects that have even
left the requirements phase, becomes feasible. Of course,
it is also possible to employ this approach in projects in
which requirements models and specifications have so far
only partially been completed. Further requirements (also
crosscutting ones) may then additionally be modeled using
a more direct approach like the ones mentioned in the pre-
vious paragraph.

An approach similar to our work is the Theme/Doc [1]
approach. One of its major goals is to semi-automatically
identify crosscutting behaviors in pre-existing requirements
specifications. After an analyst has specified a list of key
actions, which are based on important phrases from the re-
quirements document, the Theme/Doc tool takes the list as
input and lexically analyzes the document. The analysis re-
sults are then presented in a graphical view containing the
actions and links between those actions that occur in the
same requirements sentence. Since it is assumed that linked
actions are an indication of crosscutting and tangling, it is
then the analyst’s task to determine which of these links re-
ally indicate crosscutting relationships.

The main difference between Theme/Doc and the IR-
based procedure introduced in section 6.1 consists in dif-

ferent preparatory work needed for running semi-automatic
analyses. Theme/Doc needs setting up a keyword list which
is done by an analyst and only possible by fully reading a re-
quirements document. In contrast, using the IR-based pro-
cedure an analyst does not need to read the whole document
before starting the analysis. All his/her preparatory work
consists in providing the system’s name and correspond-
ing placeholders (e.g. “system”) as well as in possibly de-
termining the document’s sections which will be searched.
During analysis, selecting relevant words also becomes nec-
essary, but not until a certain number of irrelevant passages
has been filtered out. Hence, it may be expected that time is
saved in comparison to applying the Theme/Doc approach.
However, if it is the analyst’s goal to find all crosscutting
relationships in a requirements document, the Theme/Doc
approach is certainly to be preferred. If, instead, an analyst
is only interested in quickly finding the functional require-
ments crosscut by some response-time requirements he/she
might prefer the IR-based procedure.

Our approach can also be seen as strongly related and
contributing to the emerging field of Requirements Inter-
action Management (RIM) which is defined as “the set of
activities directed toward the discovery, management, and
disposition of critical relationships among sets of require-
ments” [13]. One of the main goals of RIM is to “detect and
resolve requirements conflict” [13]. Moreover, of course,
the semi-automatic technique proposed, heavily draws on
the field of information retrieval.

8 Conclusions and future work

Crosscutting requirements are a special kind of require-
ment which influence the way how other requirements are
satisfied by design or code artifacts. Identifying and doc-
umenting them as early as possible is critical and use-
ful since it improves traceability among requirements as
well as among requirements and downstream artifacts, fa-
cilitates easier assessment of change impact, supports re-
quirements evolution, enables the application of aspect-
orientation from the very start of the software lifecycle, and
prevents easy oversight of crosscutting influences during
development and maintenance activities.

In this paper, the identification problem is approached
from an aspect-mining point of view, i.e. to identify cross-
cutting requirements and influences in pre-existing require-
ments specifications. Hence, two techniques for mining the
former from the latter have been suggested. Some prelimi-
nary results of a case study confirm the approach’s feasibil-
ity as to the mining of crosscutting influences of response-
time requirements. The paper also mentioned that identi-
fied elements need to be documented but did not elaborate
on that. As similarly suggested by [10], it would for exam-
ple be possible to use a matrix relating crosscutting require-

ments with influenced requirements.
Our future work will mainly concentrate on the appli-

cation of information retrieval (IR) techniques to the iden-
tification of crosscutting requirements and influences. For
this reason, more requirements specifications will be stud-
ied to manually identify (hopefully) all crosscutting influ-
ences contained in them. Hereafter these results will then
be compared with the results obtained by an IR-based semi-
automatic tool which is currently being developed. Thus
it will become possible to assess the effectiveness and ef-
ficiency of this technique. It is also interesting to find out
how efficient the other suggested identification technique,
namely inspection, is compared to the IR-based one. From
what may be supposed however, using inspection or a tool
is no either/or question. Instead, they may be used in com-
bination and will then probably yield the best results.

Acknowledgements

The author wishes to thank the anonymous reviewers for
their helpful remarks on an earlier version of this paper.

References

[1] E. Baniassad and S. Clarke. Finding Aspects in Require-
ments with Theme/Doc. InProceedings of Early Aspects
2004: Aspect-Oriented Requirements Engineering and Ar-
chitecture Design, Lancaster, UK, 22 Mar. 2004.

[2] M. Dorfman and R. Thayer, editors.Standards, Guidelines,
and Examples on System and Software Requirements Engi-
neering. IEEE Computer Society Press, Los Alamitos, Cal-
ifornia, 1990.

[3] I. Jacobson. The Case for Aspects.Software Development,
pages 32–37, Oct. 2003.

[4] N. Loughran and A. Rashid. Mining Aspects. InProceed-
ings of Early Aspects: Aspect-Oriented Requirements Engi-
neering and Architecture Design, Workshop, April 22, En-
schede, Holland, 2002.

[5] A. Moreira, J. Aráujo, and I. Brito. Crosscutting Quality
Attributes for Requirements Engineering. InProceedings of
the 14th International Conference on Software Engineering
and Knowledge Engineering, pages 167–174. ACM Press,
2002.

[6] B. Nuseibeh. Crosscutting Requirements. InProceedings of
the 3rd International Conference on Aspect-Oriented Soft-
ware Development, pages 3–4. ACM Press, 2004.

[7] D. L. Parnas. On the Criteria To Be Used in Decompos-
ing Systems into Modules.Communications of the ACM,
15(12):1053–1058, 1972.

[8] K. Pohl. A Process Centered Requirements En-
gineering Environment. PhD thesis, Mathematisch-
Naturwissenschaftliche Fakultät, RWTH Aachen, Aachen,
Germany, 1995.

[9] B. Ramesh and M. Jarke. Toward Reference Models for Re-
quirements Traceability.IEEE Transactions on Software En-
gineering, 27(1):58–93, Jan. 2001.

[10] A. Rashid, A. Moreira, and J. Araújo. Modularisation and
Composition of Aspectual Requirements. InProceedings of
the 2nd International Conference on Aspect-Oriented Soft-
ware Development, pages 11–20. ACM Press, 2003.

[11] A. Rashid, P. Sawyer, A. Moreira, and J. Araújo. Early
Aspects: A Model for Aspect-Oriented Requirements Engi-
neering. InProceedings of IEEE Joint International Confer-
ence on Requirements Engineering (RE 2002), pages 199–
202. IEEE Computer Society, 2002.

[12] S. Robertson and J. Robertson.Mastering the Requirements
Process. ACM Press books. Addison-Wesley, Harlow et.al.,
1999.

[13] W. N. Robinson, S. D. Pawlowski, and V. Volkov. Require-
ments Interaction Management.ACM Computing Surveys,
35(2):132–190, 2003.

[14] S. M. Sutton Jr. Concerns in a Requirements Model - A
Small Case Study. InProceedings of Early Aspects 2003:
Aspect-Oriented Requirements Engineering and Architec-
ture Design, Workshop, March 17, Boston, USA, 17 Mar.
2003.

[15] S. M. Sutton Jr and I. Rouvellou. Modeling of Software
Concerns in Cosmos. InProceedings of the 1st Interna-
tional Conference on Aspect-Oriented Software Develop-
ment, pages 127–133. ACM Press, 2002.

